77 research outputs found

    Sudden drop of fractal dimension of electromagnetic emissions recorded prior to significant earthquake

    Full text link
    The variation of fractal dimension and entropy during a damage evolution process, especially approaching critical failure, has been recently investigated. A sudden drop of fractal dimension has been proposed as a quantitative indicator of damage localization or a likely precursor of an impending catastrophic failure. In this contribution, electromagnetic emissions recorded prior to significant earthquake are analysed to investigate whether they also present such sudden fractal dimension and entropy drops as the main catastrophic event is approaching. The pre-earthquake electromagnetic time series analysis results reveal a good agreement to the theoretically expected ones indicating that the critical fracture is approaching

    From pre-storm activity to magnetic storms: a transition described in terms of fractal dynamics

    No full text
    International audienceWe show that distinct changes in scaling parameters of the Dst index time series occur as an intense magnetic storm approaches, revealing a gradual reduction in complexity. The remarkable acceleration of energy release ? manifested in the increase in susceptibility ? couples to the transition from anti-persistent (negative feedback) to persistent (positive feedback) behavior and indicates that the occurence of an intense magnetic storm is imminent. The main driver of the Dst index, the VBSouth electric field component, does not reveal a similar transition to persistency prior to the storm. This indicates that while the magnetosphere is mostly driven by the solar wind the critical feature of persistency in the magnetosphere is the result of a combination of solar wind and internal magnetospheric activity rather than solar wind variations alone. Our results suggest that the development of an intense magnetic storm can be studied in terms of "intermittent criticality" that is of a more general character than the classical self-organized criticality phenomena, implying the predictability of the magnetosphere

    Unified approach to catastrophic events: from the normal state to geological or biological shock in terms of spectral fractal and nonlinear analysis

    Get PDF
    An important question in geophysics is whether earthquakes (EQs) can be anticipated prior to their occurrence. Pre-seismic electromagnetic (EM) emissions provide a promising window through which the dynamics of EQ preparation can be investigated. However, the existence of precursory features in pre-seismic EM emissions is still debatable: in principle, it is difficult to prove associations between events separated in time, such as EQs and their EM precursors. The scope of this paper is the investigation of the pre-seismic EM activity in terms of complexity. A basic reason for our interest in complexity is the striking similarity in behavior close to irreversible phase transitions among systems that are otherwise quite different in nature. Interestingly, theoretical studies (Hopfield, 1994; Herz and Hopfield 1995; Rundle et al., 1995; Corral et al., 1997) suggest that the EQ dynamics at the final stage and neural seizure dynamics should have many similar features and can be analyzed within similar mathematical frameworks. Motivated by this hypothesis, we evaluate the capability of linear and non-linear techniques to extract common features from brain electrical activities and pre-seismic EM emissions predictive of epileptic seizures and EQs respectively. The results suggest that a unified theory may exist for the ways in which firing neurons and opening cracks organize themselves to produce a large crisis, while the preparation of an epileptic shock or a large EQ can be studied in terms of ''Intermittent Criticality''

    Scaling similarities of multiple fracturing of solid materials

    Get PDF
    It has recently reported that electromagnetic flashes of low-energy <IMG WIDTH='12' HEIGHT='29' ALIGN='MIDDLE' BORDER='0' src='http://www.nonlin-processes-geophys.net/11/137/2004/npg-11-137-img1.gif' ALT='gammagamma'>-rays emitted during multi-fracturing on a neutron star, and electromagnetic pulses emitted in the laboratory by a disordered material subjected to an increasing external load, share distinctive statistical properties with earthquakes, such as power-law energy distributions (Cheng et al., 1996; Kossobokov et al., 2000; Rabinovitch et al., 2001; Sornette and Helmstetter, 2002). The neutron starquakes may release strain energies up to <IMG WIDTH='32' HEIGHT='16' ALIGN='BOTTOM' BORDER='0' src='http://www.nonlin-processes-geophys.net/11/137/2004/npg-11-137-img2.gif' ALT='104610^{46}'>erg, while, the fractures in laboratory samples release strain energies approximately a fraction of an erg. An earthquake fault region can build up strain energy up to approximately <IMG WIDTH='32' HEIGHT='16' ALIGN='BOTTOM' BORDER='0' src='http://www.nonlin-processes-geophys.net/11/137/2004/npg-11-137-img3.gif' ALT='102610^{26}'>erg for the strongest earthquakes. Clear sequences of kilohertz-megahertz electromagnetic avalanches have been detected from a few days up to a few hours prior to recent destructive earthquakes in Greece. A question that arises effortlessly is if the pre-seismic electromagnetic fluctuations also share the same statistical properties. Our study justifies a positive answer. Our analysis also reveals 'symptoms' of a transition to the main rupture common with earthquake sequences and acoustic emission pulses observed during laboratory experiments (Maes et al., 1998)

    Evolving towards a critical point: A possible electromagnetic way in which the critical regime is reached as the rupture approaches

    Get PDF
    International audienceIn analogy to the study of critical phase transitions in statistical physics, it has been argued recently that the fracture of heterogeneous materials could be viewed as a critical phenomenon, either at laboratory or at geophysical scales. If the picture of the development of the fracture is correct one may guess that the precursors may reveal the critical approach of the main-shock. When a heterogeneous material is stretched, its evolution towards breaking is characterized by the appearance of microcracks before the final break-up. Microcracks produce both acoustic and electromagnetic(EM) emission in the frequency range from VLF to VHF. The microcracks and the associated acoustic and EM activities constitute the so-called precursors of general fracture. These precursors are detectable not only at laboratory but also at geophysical scales. VLF and VHF acoustic and EM emissions have been reported resulting from volcanic and seismic activities in various geologically distinct regions of the world. In the present work we attempt to establish the hypothesis that the evolution of the Earth's crust towards the critical point takes place not only in a mechanical but also in an electromagnetic sense. In other words, we focus on the possible electromagnetic criticality, which is reached while the catastrophic rupture in the Earth's crust approaches. Our main tool is the monitoring of micro-fractures that occur before the final breakup, by recording their radio-electromagnetic emissions. We show that the spectral power law analysis of the electromagnetic precursors reveals distinguishing signatures of underlying critical dynamics, such as: (i) the emergence of memory effects; (ii) the decrease with time of the anti-persistence behaviour; (iii) the presence of persistence properties in the tail of the sequence of the precursors; and (iv) the acceleration of the precursory electro-magnetic energy release. Moreover, the statistical analysis of the amplitudes of the electromagnetic fluctuations reveals the breaking of the symmetry as the theory predicts. Finally, we try to answer the question: how universal the observed electromagnetic critical behaviour of the failing system is

    First-order transition features of the 3D bimodal random-field Ising model

    Full text link
    Two numerical strategies based on the Wang-Landau and Lee entropic sampling schemes are implemented to investigate the first-order transition features of the 3D bimodal (±h\pm h) random-field Ising model at the strong disorder regime. We consider simple cubic lattices with linear sizes in the range L=432L=4-32 and simulate the system for two values of the disorder strength: h=2h=2 and h=2.25h=2.25. The nature of the transition is elucidated by applying the Lee-Kosterlitz free-energy barrier method. Our results indicate that, despite the strong first-order-like characteristics, the transition remains continuous, in disagreement with the early mean-field theory prediction of a tricritical point at high values of the random-field.Comment: 19 pages, 6 figures, slightly extended version as accepted for publicatio

    Multi-scale polarisation phenomena

    Get PDF
    Multi-scale methods that separate different time or spatial scales are among the most powerful techniques in physics, especially in applications that study nonlinear systems with noise. When the time scales (noise and perturbation) are of the same order, the scales separation becomes impossible. Thus, the multi-scale approach has to be modified to characterise a variety of noise-induced phenomena. Here, based on stochastic modelling and analytical study, we demonstrate in terms of the fluctuation-induced phenomena and Hurst R/S analysis metrics that the matching scales of random birefringence and pump–signal states of polarisation interaction in a fibre Raman amplifier results in a new random birefringence-mediated phenomenon, which is similar to stochastic anti-resonance. The observed phenomenon, apart from the fundamental interest, provides a base for advancing multi-scale methods with application to different coupled nonlinear systems ranging from lasers (multimode, mode-locked, random, etc.) to nanostructures (light-mediated conformation of molecules and chemical reactions, Brownian motors, etc.)

    A magnetotelluric study of the sensitivity of an area to seismoelectric signals

    No full text
    International audienceDuring recent years, efforts at better understanding the physical properties of precursory ultra-low frequency pre-seismic electric signals (SES) have been intensified. Experiments show that SES cannot be observed at all points of the Earth's surface but only at certain so-called sensitive sites. Moreover, a sensitive site is capable of collecting SES from only a restricted number of seismic areas (selectivity effect). Therefore the installation of a permanent station appropriate for SES collection should necessarily be preceded by a pilot study over a broad area and for a long duration. In short, a number of temporary stations are installed and, after the occurrence of several significant earthquakes (EQs) from a given seismic area, the most appropriate (if any) of these temporary stations, in the sense that they happen to collect SES, can be selected as permanent. Such a long experiment constitutes a serious disadvantage in identifying a site as SES sensitive. However, the SES sensitivity of a site should be related to the geoelectric structure of the area that hosts the site as well as the regional geoelectric structure between the station and the seismic focal area. Thus, knowledge of the local and regional geoelectric structure can dramatically reduce the time involved in identifying SES sites. In this paper the magnetotelluric method is used to investigate the conductivity structure of an area where a permanent SES station is in operation. Although general conclusions cannot be drawn, the area surrounding an SES site near Ioannina, Greece is characterized by: (1) major faults in the vicinity; (2) highly resistive structure flanked by abrupt conductivity contrasts associated with large-scale geologic contacts, and (3) local inhomogeneities in conductivity structure. The above results are consistent with the fact that electric field amplitudes from remotely-generated signals should be appreciably stronger at such sites when compared to neighboring sites

    An EPR Study of Fe(3+) in Enstatite

    No full text
    The paramagnetic resonance spectrum of light-green natural enstatite, (Mg, Fe(2+)) [SiO(3)] shows evidence of Fe(3+) in triclinic site symmetry. Only one transition of sufficient intensity could be evaluated with the following Hamiltonian parameters: g(xx)=4.774, g(yy)=4.003, g(zz)=3.723. No hyperfine splitting was detected. It is suggested that Fe(3+) should occupy the more distorted M(2) site. A number of spread signals of very low intensity from 50 to 500 mT can be attributed to other Fe(3+) transitions or to Mn(2+). The occurrence of a small portion of iron in a trivalent state could be due to either oxidizing conditions during crystal growth or to subsequent ionizing radiation
    corecore